Geometrical Properties of The Moduli Space of Polygons in \mathbb{R}^3 .

Alessia Mandini

Abstract

For any vector $r = (r_1, \ldots, r_n)$, let M_r denote the moduli space (under rigid motions) of polygons in \mathbb{R}^3 with *n*-sides whose lengths are r_1, \ldots, r_n . We give an explicit characterization of the oriented S^1 cobordism class of M_r which depends uniquely on the length vector r, and we prove a formula expressing the volume of M_r as a piecewise polynomial function in the r_i 's (in accordance with the Duistermaat– Heckman Theorem). An interesting application of the volume formula for M_r is the calculation of the cohomology ring $H^*(M_r)$ of M_r . In fact we show that the coefficients of the Duistermaat–Heckman polynomial encodes all the necessary information on the generators and relators of $H^*(M_r)$.